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IMAGE PROCESSING ALGORITHMS FOR KKVS
WITH IR IMAGING SENSORS

L. L. Hung, D. L. Webb, D. F. Elliott, V. T. Chandler
Rockwell International Corporation
3370 Miraloma Avenue
Anaheim, CA 92803

Abstract

Image processing algorithms enable a kinetic kill ve-
hicle (KKV) with an IR imaging sensor to intercept a missile
warhead in space. The algorithms are required to determine
the target position soon enough and with such accuracy that
the KKV can divert itself toward a successful impact. This
is affected by 1) target brightness, shape, rotational motion,
and associated objects such as debris, 2) sensor characteris-
tics including aperture size and signal-to-noise ratios, 3) the
KKV’s divert capability and IMU accuracy, and 4) the ac-
quisition range and closing velocity for the target relative to
the KKV. Furthermore, the algorithms are constrained to run
on embedded digital signal processing (DSP) hardware with
finite throughput and memory capacity.

This paper presents image processing algorithms for
KKVs with IR imaging sensors and describes 1) the funda-
mental requirement for target position estimates, 2) the three
potentially most difficult parts of the problem (detection,
selection, and aimpoint), 3) various algorithms that can be
used, and 4) partitioning the algorithms for implementation
in multi-microprocessor subsystems.

1 Introduction

The KKV mission is to destroy a missile warhead
which may still be attached to the launch vehicle, or perhaps
a stage of that vehicle, or else the warhead may be a detached
re-entry vehicle (RV). The ability of a KKV system to de-
fend against the attack is dependent upon 1) the surveillance
system’s ability to detect a threat, 2) the accuracy with which
ground or airborne control can vector the boost vehicle to-
wards the kill point, 3) the boost vehicle’s deployment
envelope, 4) the KKV thrusters’ ability to remove remaining
errors, 5) the guidance, navigation and control (GN&C) sys-
tem accuracy, and 6) the capability of the KKV’s sensor and
image processing. This paper considers only requirements
for topic 6).

The KKV cannot, in general, impact a warhead at an
exact point. Errors from thrusters, attitude control, and com-
putation result in an impact some distance from the desired
point. The distance between the desired and actual impact
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points will be referred to as the miss distance. The allowable
miss distance, which defines the kill region on the target, can
be extended backwards in time to define a surface that would
result from utilizing the maximum KKV capability. If the
target is acquired at a long range, then the divert capability
can be used early in the mission to remove a relatively large
initial miss distance with an initial lateral delta velocity that
is integrated over the remainder of the mission. Since the
surface is reduced by image processing errors, the errors
should cause a negligible contribution to the decrease in suz-
face size.

The image processing algorithms must determine the
target line-of—sight (LOS) in an accurate and timely manner
so that the KKV can divert to intercept. If the target is ac-
quired sooner and if the image processing estimate is
accurate, then the surface defining the reachable targets is
larger. This paper describes 1) the requirements for image
processing, 2) acquisition, discrimination, and aimpoint
problems, 3) algorithms that can be used, and 4) multi-mi-
croprocessor implementation of the algorithms.

2 Image Processing Algorithm Requirements

There are several conflicting requirements for achiev-
ing the highest probability of kill. On one hand, the target
should be selected as soon as possible so the divert capability
can be used early in the mission to maximize the size of the
surface defining the reachable kill region on the target. On
the other hand, at long ranges the target is a point source. If
other point sources such as debris are present, target selec-
tion must be delayed until there is a high degree of
confidence that the correct object is selected.

Once the target is acquired, the image processing must
estimate the LOS direction toward a particular point in the
target. The changes in that direction indicate cross range
movement of the target relative to the KKV. A constant bias
in the LOS estimate does not affect direction changes, so
constant bias errors can be ignored. Other errors are due to
1) not detecting the target or not selecting which detected ob-
ject is the target, 2) estimating the position of the selected
target while it is still a point source, and 3) determining
which point in a target image is the desired impact point.
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Figure 1. Algorithm phase transitions.

The requirements can thus be summarized as follows.
1) Detect all objects as early in the mission as possible, 2)
Select the target object with a high confidence level in a
timely manner, 3) Provide accurate aimpoint LOS, and 4)
If the kill point on the warhead is different from the centroid
of the target vehicle, select the warhead end of the target, as
soon as it can be determined with a high probability, yet al-
lowing sufficient time to divert to the kill point.

3 Detection, Selection, and Aimpoint Problems
3.1 Detection Of Target At Long Range

Again conflicting requirements must be resolved. The
kill vehicle must be sufficiently small that it can be boosted
to a large intercept volume with a minimum cost which con-
flicts with the need for a large aperture telescope to collect
sufficient photons from a distant target. Complicating mat-
ters is noise, including pattern, white and one over f (1/f)
noise [1], imperfections in the focal plane including dead de-
tectors, and nonuniform responsivity of the detectors.

It is well known that signal-to-noise ratio (SNR) is in-
creased by integration, so enhancing SNR is an obvious
technique for increasing detection range. On-focal plane in-
tegration must be accomplished so as to preclude capacitor
and multiplexor (MUX) saturation, and to accommodate
available analog-to-digital converter (ADC) capability.

3.2 Target Selection

Generally, at desired acquisition ranges all objects in
the field-of-regard (FOR) are point sources. The target must
be discriminated from booster fragments and other debris,
decoys, stars and other space objects such as satellites, etc.
Closely spaced objects (CSO) must be either resolved or, un-
til resolution is possible, included as potential targets.

The observable data for selecting the target is intensity,
intensity rate, and apparent motion. Discriminants derivable
from this data include tumbling or coning motion, passive
range and closing rate based on ground based radar initial es-
timates. = Multi-wave band data yields temperature,
temperature rate, and emissivity-area product. Unfortunate-
ly, due to the limited telescope aperture, optical aberrations,
and the noise in the readout, the target image is blurred and
corrupted with noise. Accurately extraction of discriminants
requires additional image processing to provide SNR en-
hancement.
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If external target information is available, this external
data must be fused into the discrimination process to opti-
mize correct target selection.

Aimpoint Selection

If the target is a separated reentry vehicle (RV) it is not
necessary to remove a large miss distance when the RV is re-
solved. If it is a tumbling missile, the end containing the
warhead must be identified before the kill point on the war-
head can be determined. Measurable characteristics of the
target image include centroid, principal axis, length, width,
area, and intensity. Data quality can be improved by remov-
ing blurring and by combining consecutive images to obtain
more accurate target intensity and shape information.

Aimpoints are easily calculated if the target attitude is
known. They lie on the principal axis of the target image, a
certain portion of the way from the nose end to the tail end.
The principal axis, the certain portion of distance, and the
nose versus tail identification are based on 1) the rotation
angle of the target’s longitudinal axis’ component in the fo-
cal plane, and 2) the aspect angle between the target’s
longitudinal axis’ and a normal to the focal plane. These two
angles define the target attitude.

A history of rotation and aspect angles is necessary
when the target attains an attitude that is difficult to estimate.
For example, if the aspect angle becomes zero (head-on
case), then the rotation angle is undefined and is not required
for aimpoint estimation. Since a symmetrical target’s rota-
tional motion constrains the aspect and rotation angles, they
are not independent of one another and their histories can be
advantageously estimated together in a smoothing filter.

In summary, a fundamental problem is to determine tar-
get attitude and target type so as to hit a precise kill point.
Solving the problems of increasing target resolution and esti-
mating target attitude enables selection of the aimpoint and
prediction of its location at impact.

4 Detection, Selection, Aimpoint Algorithms

The phase transition of the algorithms is depicted in
Figure 1. Objects are detected and tracked to increase the in-
formation available for discriminating the target. After the
target is selected, the homing phase starts, and the centroid
is provided to guidance. When the target image is large
enough to identify the warhead, transition to the aimpoint
phase results in providing the kill point location to guidance.
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Figure 2. Variables set during calibration.

4.1 Detection Algorithms

Detection at the earliest possible time requires analog
and/or digital integration to enhance SNR. Analog integra-
tion time and detector readout capability are increased by a
skim voltage that removes electrons due to photons from
telescope self emission. Capacitor size can be varied to in-
crease the size of the readout. Digital calibration may not be
required if detector linearity is good, and if off-focal plane
integration accounts for background intensity, which in-
cludes pattern noise.

4.1.1 Calibration Figure 2 shows the variables thatcan
be set during calibration. The variables integration time, 7,
skim voltage, skim, and global offset, O, interact. An itera-
tive procedure optimizes skim subject to variations in the
skim control field effect transistors (FETs). If digital calibra-
tionis used, standard statistically based procedures determine
a digital gain and offset G;; and Oj; for detector ij, where i
and j are the row and column numbers, respectively.

4.12 Off-focal Plane Integration

Off-focal plane integration sums frames to produce
master frames at a lower frame rate [2]. Sensor motion
causes subframes to have different viewing directions, so
each subframe has its own spatial offset applied to compen-
sate for that motion before the frame is added to the master
frame. Each pixel of the resulting master frame contains the
signal from a particular viewing direction. The FOR is repre-
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sented by an inertially fixed 2D array of pixels and the output
from each detector is added to the pixel that has the same
viewing direction as the detector. A variation fixes the FOR
relative to a target rather than to inertial space.

The summing increases SNR with respect to the white
noise component, but the background must still be removed
from the master frame. Off-focal plane integration assumes
that the output of a given detector in a subframe remains es-
sentially free of signal while the subframes are being
accumulated. This output is estimated for each detector by
taking a temporal average of the detector’s readout values
during the accumulation of a master frame and determines
abackground value for that detector. The background is then
repeatedly subtracted from the master frame using the same
motion-compensating spatial offsets as when the subframes
were accumulated.

Off-focal plane integration algorithms estimate and re-
move background due to the scene, sensor self emission, and
1/f noise. They increase SNR by digital integration leading
to earlier detection of objects. The sensor response in re-
gions of interest is removed to the greatest degree possible
by deconvolving the sensor response function from the
image.

Figure 3 shows the result of off-focal plane integration.
A single frame shows a strong signal, but nothing else other
than noise. After off-focal plane integration, three low in-
tensity signals are also present. Note that an offset evident
in Figure 3 (a) is removed by the background removal as
shown in Figure 3 (b).

4.2 Selection Algorithms

Selection algorithms are required for an operational
KKV to discriminate a target from other objects in the FOV.
Near term objects that must be discriminated include pieces
of solid debris from the booster, the booster itself if it is sepa-
rated from the warhead, and booster fragments. Eventually,
boosters may include explosives to break it up along fracture

Figure 3. Off—focal plane integration. (a) Single frame and (b) master frame.
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Figure 4. Algorithms used during selection.

lines introduced to control the size of the booster fragments.
The fragments then must be discriminated from the warhead.
Far term discrimination problems involve sophisticated
threats that include decoys, balloons, aerosols, chaff, etc. in
the objects deployed with the RV. All of these objects exhibit
thermal, thermal rate of change, emissivity area, and intensi-
ty rate of change that enable discrimination of these
nonlethal objects from the warhead.

42.1 Algorithm Interaction Figure 4 illustrates the
interaction between off-focal plane integration (OFPI) and
target selection. The features extraction function of Figure 4
identifies discrimination features based upon repeated angu-
lar position and intensity measurements, used for object
differentiation by classification algorithms. Table 1 illus-
trates typical features. It is clear from this table that objects
can not simply be discriminated using a single feature. In
addition accurate estimation of an object’s temperature re-
quires multi-wavelength measurements.

Classification algorithms address the discrimination
problem by using feature vectors of the objects in the seek-
er’s FOR. These vectors are compared in the classifier using
rules developed from training data to select the most prob-
able target. This selection can be delayed only as long as is
consistent with the allowable surface defining the reachable
targets.

422 Tracking, feature extraction, classification A
tracking algorithm determines a trajectory for each object so

that the master and/or frame feature data is associated with
the correct object. The features, as has been mentioned, are
based on object motion, intensity, and motion/intensity rates.
The features are estimated with the greatest accuracy pos-
sible by deconvolving the sensor response to determine
trajectories to subpixel accuracy, and by estimating the am-
plitude with the greatest precision possible.

Classification requires features or discriminants to dis-
tinguish objects including celestial bodies, missiles with
attached warheads, reentry vehicles, shrouds, tanks, tank
fragments, balloons, chaff, aerosols, decoys, and other
associated objects. Classification techniques based on phe-
nomenology discriminants have been studied in the past [3].
Other discriminants based on multiple observations to iden-
tify kinematics of an object were also investigated.

Once the feature vector consisting of measurable dis-
criminants is obtained, the type of object can be identified by
classification process. Classification algorithms can be rela-
tively simple for near term threats, but become increasingly
sophisticated for far term threats. A near term classifier
based on single color focal plane data uses object motion and
intensity and their rates.

4.3 Aimpoint Algorithms

The aimpoint algorithms estimate the desired impact
point based on the sensor’s target image to within a small
angle or, equivalently, to within a small number of pixels [5].
At longer ranges, a centroid of the target image is sufficiently

Table 1. Typical object features which allow target selection.

TARGET OBSERVABLE DISCRIMINATION FEATURES
TYPE BAND EMISSIVE | TEMPERA- | CONING | PRECESSION | DISPERSION SPIN
AREA TURE ANGLE PERIOD VELOCITY AV RATE
PBV VISIBLE, MWIR, LWIR LARGE ~400K SMALL VERY LOW SMALL LOW
RV VISIBLE, LWIR AVERAGE ~300K SMALL LOW SMALL VARIOUS
BALLOONS VISIBLE, LWIR AVERAGE  COOLS VARIOUS SLow VARIOUS LOW
LREPs VISIBLE, LWIR AVERAGE  COOLS VARIOUS VARIOUS VARIOUS VARIOUS
FRAGMENTS | VISIBLE, LWIR VARIOUS COOLS  TUMBLES TUMBLES 1/ MASS TUMBLES
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close to the position of the target’s desired impact point. At
closer ranges, when the target’s attitude becomes known,
then the position of the desired impact point is calculated.

The important parameters for aimpoint determination
are target rotation and aspect relative to the KKV sensor
LOS, (see [4], [5] for coordinate frame description), the nose
end of the target, and target type. Nose end identification is
particularly important if the target is a complete missile.
With the rotation angle known, aimpoints can be estimated
with sufficient accuracy while the aspect angle is still being
determined. Target range is estimated from changes in the
target image’s width, area, and intensity. Range together
with length of the target provide the target aspect angle.

mentioned earlier, measurable characteristics of the target
image include: centroid, principal axis, length, width, area,
and intensity. Consecutive images are combined to improve
the quality of the image used to measure target characteris-
tics. This is done by aligning the target image centroid
positions and interpolating each image onto a common grid
covering the target area. Bilinear interpolation is used for a
value at a grid position from the values of pixels surrounding
that position. The measurements are then made on this grid.

The centroid of the target image consists of the first
moments of pixel intensities over a threshold. The principal
axis orientation is calculated directly from the second
moments of those pixel intensities. The length of the target
image is obtained by evaluating intensity along the principal
axis and applying a threshold to determine the end points of
the axis. Similarly, the width of the target image is obtained
by intensity thresholding along normals to the principal axis.
The normals are placed at predetermined positions along the
length of the axis. For a missile target, widths are calculated
near the midpoint and averaged together. For an RV target,
the largest width along the entire axis is used.

The area of the target image is the number of its pixels
over threshold, and the intensity is the sum of its pixel inten-
sities. Also, the intensity at a specific position in a target
image is obtained by bilinear interpolation of the values of
the four surrounding pixels.

Target rotation angle is the orientation of the target
image’s principal axis with respect to a focal plane axis. The
aspect angle is estimated from the target image length to-
gether with either the target’s range or the target image
width.

4.3.2 Nose End Identification Anexample of an algo-
rithm for nose end identification is an estimator of the width
of the target image at both ends of the principal axis. The
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width at each end is the average of many widths measured
along a fraction of the length. The two end widths are aver-
aged over consecutive frames and the narrower end is
designated the nose of the target.

5 Multi-microprocessor Implementation

This section describes real-time algorithm imple-
mentation using four TMS320C30 microprocessor devices.
Selection algorithms are for a near term threat, so the prima-
ry processing difficulty is the OFPL

5.1 Partitioning for Real-Time Implementation

In a focal plane output partitioning that accommodates
a 256 x 256 pixel focal plane read at 120 Hz, each processor
is given a region of the input image with the data allotted in
the order read. The regions may overlap. For OFPI each mi-
croprocessor is given a horizontal strip comprising
one-quarter of the image, as shown in Figure 5.

5.2 Hardware Configuration

Figure 6 illustrates the microprocessor hardware con-
nections. The field programmable gate arrays (FPGAs)
control movement of the pixels to the first in, first out (FIFO)
devices. The shared memory allows for tight coupling
among processors, and for data distribution.

The shared memory bus bandwidth is insufficient for
transmitting entire images on a contiguous basis. Therefore,
each microprocessor processes and summarizes its portion
of the image. The summary information is passed to shared
memory and integrated by higher level algorithms.
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